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ABSTRACT

the filter design work that has been performed to date for filter SLMs with both
• d unconstrained modulation characteristics has been concerned with o zing theofMuch
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of view, and the most important correlation performance criterion is ultimately the probability of
correct classification of a given object as either belonging to the in-class set or the out-of-class set. In
this work, we study the problem of designing ternary phase and amplitude filters (TPAFs) that reduce

the probability of image misclassification. We use the Fisher ratio as a measure of the correct
classification rate, and we attempt to maximize this quantity in our filter designs. Given the non-

analytical nature of the design problem, we employ a simulated annealing optimization technique. We
present computer simulation results for several cases including single in-class and out-of-class image
sets and multiple image sets corresponding to the design of synthetic discriminant function filters. We

find significant reductions in expected rates of classification error in comparison to BPOFs and other

TPAF designs.

1. INTRODUCTION

Binary phase-only filters (BPOFs) and ternary phase and amplitude filters (TPAFs) have
merited study for implementation in optical correlators because they can be easily encoded on current

spatial light modulator (SLM) devices. High-speed programmable SLMs offer the promise of real-
time pattern recognition and classification for applications such as target tracking and autonomous
robotic vision systems. Much of the filter design work that has been performed to date for filter SLMs
with both constrained and unconstrained modulation characteristics has been concerned with

optimizing the design for certain performance criteria associated only with the correlation function of

the target image. Examples of such performance measures include the signal-to-noised ati°l (SNR),

the peak-to-correlation energy 2'3 (PCE), and the Horner efficiency 4. However, in most likely
application scenarios there will be multiple objects that may populate the field of view, and the most
important and basic correlation performance criterion will be the probability of correctly classifying a
given object as either belonging to the in-class set or the out-of-class set. That is, a successful filter
design must be able to clearly discriminate between the desired in-class image set and an out-of-class

set, even in the presence of image noise.

In this work, we study the problem of designing ternary phase and amplitude filters that reduce

the probability of image misclassification. Recent work has addressed the issue of optimally

disciminating between a target image and white background noise 5, but here we are concerned with the
situation of two or more distinct image classes, and the need to distinguish between them with a given

filter. This situation has been addressed recently in the context of fully complex filters 6'7, but our

study is aimed at the specific type of ternary encoded filter that is implementable on the magneto-optic
spatial light modulator. The Fisher ratio (FR) is a quantitative measure that is directly related to the
correct classification rate, and we attempt to maximize this quantity to obtain better filter designs in
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comparison to the conventional BPOF and TPAF designs that maximize another criterion such as

SNR. The specific design algorithm followed here was to first design a BPOF to match the image or
images defined as the in-class set, and then optimize the non-zero region of support (ROS) of the filter

to improve the probability of correct classification between the in-class set, and another pre-defined
out-of class set. White Gaussian image noise was assumed to be corrupting the images. We used a

simulated annealing optimization technique to find the filter region of support, which in principle
allows one to find the globally optimal solution while avoiding sub-optimal local solutions. We

present computer simulation results for several cases including single in-class and out-of-class image
sets and multiple image sets corresponding to the design of synthetic discriminant function filters. We

find significant reductions in expected rates of classification error for ternary filters designed to
maximize FR with a simulated annealing algorithm in comparison to BPOFs and other TPAF designs.

.2. FILTER DESIGN ALGORITHM USING SIMULATED ANNEALING

To define the problem, consider Figure 1 which shows the probability density functions of both

the in-class and out-of-class image correlation peaks for a hypothetical pair of image sets. They are
illustrated as Gaussian distributions centered around their respective mean values. Even though we
will assume that the image noise is white noise with each pixet having a Gaussian distribution with a
mean of zero, this is not necessary for the peak distributions to be Gaussian. The central limit theorem

predicts this result since the central correlation peak error is the sum of a large number of independent
random variables (as many as there are image pixels). For zero-mean white noise, the means of the
two distributions are equal to the peak values in the absence of noise, while the two standard
deviations are equal and are determined by the standard deviation of the image noise distribution.

Referring again to Figure 1, it is easy to show that in order to equalize the error probabilites of
the two variables, the correlation threshold t is located at the mean of the expected values of the in-
class and out-of-class peaks,

1

t _- (Z[c,c]+ Coc])
where Cic is the in-class peak value and Coc is the the out-of-class peak value. Correlation peaks
measured higher than t are classified as in-class images while those lower than t are classified as out-
of-class. If the variances of the two variables were unequal, the optimal threshold t would shift either
to the right or left. Given the Gaussian nature of the two distributions and our assumption that their

standard deviations are equal, we can write the probability of correct identification as the probabilitythat the in-class peak will be greater than t, or

1 -(x-ZfCic])2PID = _ Gc exp dx
2 (IC2

(2)

where _c is the standard deviation of the in-class (and out-of-class) correlation peaks. We can further

simplify the expression for PID by letting z represent a normalized Gaussian random variable with
mean 0 and variance 1. Then it is easy to show that

d-ryes 1 -z 2PID = _ exp _ dz (3)

which can be evaluated easily b5¢ numerical integration or reference to printed tables of this function.
Looking at the upper limit of the integration, we can write
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and note that PID is a monotonically increasing function of a.

correct identification is the basis of the Fisher ratio 8 performance measure which is defined as

FR -
1 2 2

FR = 4 a 2

(4)

This analysis of the probability of

and it is thus clear that for CYic= CYoc= CYc,

(5)

(6)

as they are defined here. Since PID is an increasing function of a, it is also an increasing function of
FR. We may thus use either a or FR as the basis of our filter design and attempt to maximize either

measure to obtain the optimal filter.

In the work presented here, we used the measure FR as defined in Eq. 5 to assess the

performance of a given filter. As implementable on the magneto-optic clevice 9, a ternary filter H(u,v)
has possible pixel encoding values of (-1, 0, +1). Rather than attempt to find the most general ternary
filter design that maximizes FR, we limit our algorithm to finding the best region-of-support (ROS)
function for a binary phase-only filter. The ROS is defined as those filter pixels having a non-zero

value. The BPOF function for a given image s(x,y) is

/+ll real(S(u,v) e-J_) > 0 } (7)B(u,v) = real(S(u,v) e-J_) < 0

where S(u,v) is the Fourier transform of s(x,y) and in theory one must search through [3-space from 0

to 7: in order to maximize the correlation peak. In practice, the optimal value of [3 is usually 0, and

thus the BPOF B(u,v) can be expressed as the sign of the real part of the image Fourier transform.

The filter H(u,v) is written as --
H(u,v) = M(u,v).B(u,v) (8)

where M(u,v) is a binary mask function having pixel values of 0 and 1 that manifests the ROS. It is
this function M(u,v) that we seek to optimize in our design in order to maximize the FR measure. In

the most general optimization we would allow each pixel to assume any of the 3 state values in the

design process. However, this would significantly lengthen the design time in comparison to our
approach, so we have effectively traded some optimality in performance for a design that can be
obtained in a reasonable time. Also, an advantage of optimizing the ROS only is that the phase of each

pixel within the ROS remains matched to the input image through the expression in Eq. 7.

Given the ternary encoding of the desired filter, and an assumption of zero-mean white image

noise, it is easy to show that the expression for FR can be re-written as

[Icicl ICocl]- (9)
FR =

2 Z M(u,v)
CYn u,v
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where the denominator is simply the variance of the image noise multiplied by the number of pixels in
the filter ROS, and Cic and Coc represent the correlation peak values in the absence of image noise. The
form of Eq. 9, because of the fact that the out-of-class training image correlation peaks may be
anywhere in the correlation plane, is such that precludes an analytic design of H(u,v). Thus we turn to

an iterative optimization technique such as simulated annealing. Simulated annealing (SA) is an
algorithm that is often used to solve complex optimization problems and in theory is able to find the
globally optimal solution. SA has been previously applied to the design of BPOF correlation filters in

order to increase the discrimination between two similar images with successl_.0. Our effort here

extends that work in the sense that we are applying the technique to ternary encoded filters (TPAFs)
but we are optimizing the Fisher ratio as a direct measure of the probability of correct identification

rather than the ratio of correlation peak strengths, which does not account for performance in the
presence of image noise. We also apply the technique to designing synthetic discriminant filters
(SDFs) which allow a degree of image distortion over a specified range.

The basis of the SA algorithm used is as follows: a perturbation is made to the system in the
form of a change in state of the mask function M(u,v) at a given pixel. The new value of FR is

computed after the perturbation, and the change in FR at the i th iteration is expressed as

AFR = FR i - FR i-1 - • (10)

If AFR is positive, then the perturbation is always accepted. If the change in Fisher ratio is negative,
corresponding to a decrease in the filter performance, then the perturbation is accepted with some
probability. The probability is expressed as

zXFR
P[AFR]= exp(-_--) (11)

where k is a constant and T is the so-called temperature parameter. Since AFR as used in Eq. 10 is

negative, the probability is a number between 0 and 1. In order to model the physical process of
annealing, the temperature T is initially high so that there is a high probability of acceptance even when

AFR is negative with a large magnitude. This helps to prevent the optimization from getting stuck in

local minima. Gradually the temperature is cooled, so that eventually T is very low, and there is a very

low probability of acceptance of changes that produce a negative AFR. Thus the algorithm should

gradually "settle" into the global optimum. The cooling schedule of T is set by the algorithm designer.
In this study, we used the schedule

T(j) = o_r.T(0) (12)

where j is the iteration number, T(0) is the intial temperature, and r is given by

r= floor(J). (13)

The variables T(0), C, and o_ are set at the beginning of the optimization. In Eq. 13, C is a number

that specifies the number of iterations spent at the current temperature before T is decreased by the
multiplying factor o_.

3. SIMULATIONS AND RESULTS

3.1 Single in-class and out-of-class images

In our initial experiment with the use of the SA technique to maximize the Fisher ratio
performance metric, we address the simplest case of a single in-class image and a single out-of-class
image. We wish to maximize the probability of correct identification of a given input image that is a

20 / SPIE Vol. 2026



noisy version of either one or the other, based on correlation with the filter under design. The images
used for this simulation are shown in Figure 2. The BPOF function B(u,v) was first calculated for the

in-class image as given in Eq. 7 with _3 = 0. The SA algorithm employed was designed to scan

through the rows of the filter mask function M(u,v) and at each row, a column was picked at random.
The value of the mask M(u,v) at the pixel defined by this row and column was then switched to its

opposite state (0 or 1), thus creating a perturbation to the state of the filter. The effect of the
perturbation was analyzed by calculating the new value of FR and comparing it to the previous value of
FR. If the change was positive, the perturbation was automatically accepted. If it was negative, a

probability was calculated according to Eq. 11, and a random number generated between 0 and 1 was
compared to this probability to decide whether or not the change was accepted. This process continued
with the temperature T changing according to Eq. 12 until the algorithm converged to a solution. The

initial value of T was set such that even the largest negative values of AFR were given a high

probability of being accepted in the beginning of the process. By the end, T was low ex_ugh that in
effect only positive changes to FR were accepted. __

Because the calculation of FR involves the determination of 2 correlation peak values, the SA

design process could be quite slow if we computed by brute force the correlation function of both the
in-class and out-of-class images after each filter perturbation. Thus we significantly speeded up the

process by considering only the changes to the correlation functions effected by the filter perturbation.
For the in-class image, we assumed that the correlation peak was at the center of the field (for a

centered image), and thus we were concerned with only a single pixel. The central peak is expressed

as

Cic= _ Sic(U,v).H(u,v) = _ Sic(U,v).M(u,v) B(u,v) (14)

and thus we simply add or subtract the quantity Sic(U,v)B(u,v) when the mask function at (u,v) is

changed to either 1 or 0, respectively. The out-of-class correlation is not quite as easy, however,
because in this case the correlation peak value can occur anywhere in the correlation field. As a

compromise between speed and accuracy, we therefore assumed that the out-of-class peak would be
found in the central 20x20 pixel region (in the 64x64 correlation plane) and updated only the values in

that region in a manner similar to the in-class correlation central pixel, taking into account the
appropriate complex values of the Fourier kernel at each given correlation plane position. We then
took the maximum value in that 20x20 pixel region as the current value of Coc. We found this

technique to greatly speed up the design process with little limitation to the generality of the solution.

The results of the design of an FR-maximized TPAF for the single in-class and out-of-class

images in Figure 2 are shown in Figures 3 and 4, and Table 1. Figure 3 shows the'_volution and
convergence of the FR metric as a function of the iteration number and Figure 4 shows the final ROS
configuration. Table 1 contains the FR values of the original BPOF, the optimized TPAF, and for

comparison purposes, ternary filters designed to maximize SNR 1 peak-to-correlation-energy PCE 1I,
and discrimination D defined as the ratio of the in-class peak' intensity to the out-of-class peak

intensity 12. The latter three filters have analytic designs that maximize the metric of interest (SNR,
PCE, or D) but of course are not optimized for FR. The TPAF designed with SA to maximize FR

clearly provides the best FR performance, as expected. Transformation curves of FR to PID are given
in Figure 5 for three different noise levels as a means of evaluating the designs in terms of PID.

3.2 Synthetic discriminant filters for distortion tolerance

As shown by the previous results, the SA design approach appears to work well for designing a
ternary filter to maximize the probability of correct identification in a two image set. However, this is a
very limited situation, and a much more useful filter would be one which can deal with larger numbers
of in-class and out-of-class images. In particular, we are concerned with synthetic discriminant filters
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(SDFs) which yield a degree of tolerance to distortions in the input image. For example, a commonly
used type of SDF is that which produces equal correlation peak intensities for rotated versions of the

basic in-class image. In this section, we address the design of this type of ternary filter that produces
roughly equal peak intensities for the in-class image set, while maximizing the Fisher ratio defined by
the in-class set and a similar set of rotated versions of the out-of-class image.

The synthetic discriminant function filter is designed to provide equal central correlation peak
values for a given set of centered in-class training images. For a filter H(u,v), this is expressed as

f Sj(u,v) H(u,v) = kj = k, (15)dudv

where Sj(u,v) is the Fourier transform of the j-th training image sj(x,y), and k is a constant for all

training images. A solution for the filter function H(u,v) involves creating a composite image
Scomp(X,y) as a linear combination of the training images as

N_

Scomp(X'Y) = Z ajsj(x,Y) (16)
j=l

where Ns is the total number of in-class training images. The filter H(u,v) is then made from the
composite image according to the modulation capabilities of the filter SLM as

U(u,v) = M {S;omp(U,V)} (17)

where * represents the complex conjugate and M{X} is the modulation operator. The objective of the

SDF design algorithm is then to determine the coefficient vector a = [a 1 a 2 ... aN] T such that when the

filter H(u) is made from Scornp(X), the equal correlation peak condition expressed in Eq. 15 is satisfied.

For binary phase-only filters, the modulation operator is nonlinear and is represented by the
binarization expressed in Eq. 7. In this case, there is no analytical solution for the proper coefficient
vector a that yields equal correlation peaks for the training images. Instead, one must usually resort to
iterative techniques for finding a such as the modified Newton-Raphson algorithm developed by Jared

and Ennis 13 or the successive forcing algorithm of Bahri and Kumar 14. Both of these algorithms
essentially adjust the coefficient vector a to converge to a solution that satisfies Eq. 15. There is no
theoretical guarantee that these algorithms will converge to a solution, but they have been used with

reasonable success 13-15 and have converged in nearly all cases studied.

The general algorithm we employed to design ternary SDFs (TSDFs) that maximize a definition

of the Fisher ratio was to first design a BSDF from the in-class training images using the technique of
Jared and Ennis, and then use a simulated annealing procedure to design the ROS function M(u,v) that
multiplies the BSDF. Thus the TSDF can be expressed as

TSDF(u,v) = M(u,v).BSDF(u,v) (18)

and the design process is analogous to that used in the previous section with single in-class and out-of-
class images. Now however, the definition of the Fisher ratio employed during the SA algorithm must
be modified somewhat because the in-class and out-of-class sets both contain multiple images in
general. If we make the reasonable assumption that each individual training image has an equal
probability of being the input image correlated, then the logical modification of FR is to use the mean
values of the in-class and out-of-class training image correlation peaks in the numerator. For the
purpose of designing optimized TSDF filters, we then define the performance metric as
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j=l - N°---[ (19)

FRmean = 2 _ M(u,v)
(_rl tl,v

where Nic and Noc are the numbers of in-class and out-of-class training images, respectively.

Given the fact that the metric FRmean as written in Eq. 19 is the measure of interest for a TSDF,

it is obvious that this is the quantity we should maximize in the SA design procedure. However, as

this requires evaluating the correlation peak values for Nic in-class images and Noc out-of-class images
at every iteration in the algorithm, this design process will take much longer computationally in
comparison to the design for single in-class and out-of-class images, especially for large Nic and Noc.
Therefore we evaluate several different design procedures for the TSDF, and compare there." terms of

their performance levels with respect to the metric FRme.an expressedin Eq. 19, and also, i_ terms of
the relative time required computationally to achieve the aesign, for me Iollowlng tour set_oI resuas,
we used 64x64 pixel rotated versions of the images shown in Figure 2. Six training images comprised
both the in-class and out-of-class image sets, with the images rotated at every 1 °, from 0 ° to 5 °. This

small range was chosen to decrease the design time, yet present a reasonably challenging design.

A. The first design process is simply the direct approach given above, where we maximize

FRmean during each iteration of the SA algorithm. As with the design in the previous section, we
evaluate the in-class correlation peaks at the origin (since the in-class images are centered), and

calculate the central 20x20 pixel region in the correlation plane for each out-of-class image, taking the
maximum value in that region as the peak value. This process worked well, resulting.in a ternary

filter, designated TSDFa, that has a metric value of FRmean = 5.2. For comparison, the 5 ° binary SDF
(BSDF) designed for these images has a value of FRmean = .83.

B. Given the relatively long design time required by the direct method in A., we next tried to
shorten the SA process by maximizing the Fisher ratio defined by the correlation peaks of the

composite in-class and out-of-class images. That is, we defined Sic,comp(X,Y) = 1/NicZsic,j(x,y), and

similarly for Soc,comp(X,Y), and then maximized the quantity

C 2
[ICic,compl - I oc,compl] (20)

FRcomp = 2
_n _ M(u,v)

through design of the ROS function via simulated annealing. Note that cic comp and Coc,comp are the
correlation peaks for the composite in-class image and composite out-of-_lass image, respectively.
Thus this design is significantly faster than the direct approach because it involves evaluation of only a
single in-class peak and a single out-of-class peak to compute FRcomp at each step. However, its
disadvantage is that this algorithm does not directly maximize the quantity of interest. Accordingly, the
result of this design after convergence was a filter TSDFb that has a metric value of FRmean = 4.0,

which is less than produced by TSDFa, as we would expect.

C. Not surprisingly, the value of FRmean is greater for TSDFa than for TSDFb. However, the
latter design also took far less time to compute, and it is in fact reasonably close in performance to the
former. This suggests that perhaps a good design procedure might be to utilize both methods.
Therefore in this approach, we effectively used a two-stage process by applying the direct but slow

algorithm in A using the solution of the fast design in B as the starting point. The starting temperature
of the second part (the direct optimization) was adjusted to be relatively low so that the starting point
mask function was the foundation of the iterations. The result of this process was TSDFc, which
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produces a metric value of FRmean = 5.1, which is nearly identical to the results found in A.
However, the total design time in this case was significantly less than in A.

D. Finally, we can reduce the design time again by making an assumption regarding the in-class
training image correlation peaks. Writing out the expression for the mean of the in-class peaks, wehave

Nic J Cic'j ic j u,v

If we now assume that the in-class peak values are predominantly real and positive, then this can be re-written as

Nic j Cic,j = N_.c j_ u,_vSJ(U,V) H(u,v) I

=I S/u,v)JH<u,v)I <22)

which upon inspection is seen to be the peak value of the composite in-class image. Thus if the
assumption holds, then we may evaluate only the composite in-class image peak rather than all of the

individual in-class image peaks. We can not make an analogous assumption for the out-of-class image
peaks, however, because in this case the training image peak values may be anywhere in the
correlation plane, and we must continue to evaluate each of the out-of-class correlation functions.

Thus the method applied here is identical to C, except that in the second part of the optimization

process, we continue to use the composite in-class image peak. This further decreases the total design
time, while offering similar performance in terms of the mean Fisher ratio metric.

The results of the simulations performed for the SDF design algorithms A-D are summarized in

Table 2. The results include not only FRrnean, but also a design time parameter t ' that is basically the
total number of iterations required multiplied by the time per iteration. This quantity is normalized to
the direct approach outlined in A.

E. Since the design time using the simulated annealing algorithm can be quite long, a concern in
the design of synthetic discriminant filters is how many training images, or equivalently, how large a
distortion range, can be designed in this way. As we saw in section D, if we make the assumption that

the in-class correlation peaks are predominantly real, then we can use the composite in-class image
during the design which can significantly reduce the design length. Therefore, the real bottleneck is
the number of out-of-class training images because we must generally evaluate each of their correlation

functions at every iteration. Thus two filters that encompass distortion ranges that are different by a
factor of K can be expected to require design times of roughly the same proportion. In this section we
address the issue of designing larger range TSDFs without tremendously long design times. Towards
that end, we performed design simulations for a 30 ° rotation range SDF, assuming that each of the

rotated versions of the in-class and out-of-class images at every 1° were equally likely to appear as the
input image. If we were to design this filter directly using every out-of-class training image, there
would be a total of 31 such images, and the design process, even using the approach in section D,

might be extremely long. Thus we reduced the number of out-of-class training images by using only
those images spaced by a specific interval.

In the first approach, we used only those 4 out-of-class training images rotated at 0, 10, 20, and

30 degrees. The design was accomplished as in D, where we first made a preliminary design using the
composite in-class and out-of-class images, and then refined the design by using the individual training
images identified. A second filter was also designed using the 7 out-of-class training images rotated at
0, 5, 10, 15, 20, 25, and 30 degrees in an identical fashion, and finally a third filter was designed
using the out-of-class training images spaced at every 3 ° . The results from the three designs are

presented in Table 3. It is clear from those results that the 10 ° out-of-class image spacing is too large
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to adequately represent the entire out-of-class set during the design process because the value of
FRmean obtained evaluating only the reduced set of 4 out-of-class training images does not correspond
well to the value of FRmean obtained when we evaluate all of the possible images in the range.
However, as we decrease the spacing between the out-of-class images included in the design, the filter

begins to be more representative of the entire out-of-class image set. The difference between the two
values of FRmean decreases progressively in the results for the 5 ° spacing design and the 3 ° spacing

design. This approach can yield a good filter design in a small fraction of the time required if one uses
all out-of-class training images. The necessary image spacing will depend of the particular image sets.

4. SUMMARY

We have studied the use of the simulated annealing optimization algorithm for the design of

ternary phase and amplitude correlation filters for implementation on the magneto-optic st2atial light
modulator. Specifically, the SA technique was employed to maximize the Fisher ratio p_formance
metric, which is directly related to the probability of correct identification between two closes in the
nresence of noise. We designed filters in this way for a single pair of images to be differe_iated, and
also for sets of in-class and out-of-class images corresponding to geometrically distorted versions of

the base images. We obtained significant improvements in performance with filters designed with this

algorithm in comparison to binary filters and other ternary filters optimized for criteria such as SNR
and the discrimination ratio. The main drawback to this design approach is potentially long design

times, so several methods to shorten the design were studied.
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Figure 2: (a) 64x64 pixel in-class image. (b) 64x64 out-of-class image.
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Evolution of FR as function of iteration number in simulated annealing algorithm for

single in-class and out-of-class images.

Figure 4: Region of support (ROS) function for ternary filter that maximizes FR for single in-class
and out-of-class images.
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Fisher ratio (FR)

PID vs. Fisher ratio for three levels of image noise.

Filter

BPOF

TPAFFR
TPAFsNR
TPAFpcE
TPAFD

Fisher ratio FR

3.9

12.2
.3

3.2

2.8

TSDFFR: filter designed with simulated annealing to maximize FR, TSDFsNR: filter

designed to maximize SNR of in-class image, TSDFpcE: filter designed to maximize
PCE of in-class image, TSDFD: filter designed to maximize discrimination ratio.

Filter

BSDF

TSDFa
TSDFb
TSDFc
TSDFd

FRmean

0.8
5.2
4.0
5.t
5.1

t !

1.00
0.16
0.45
0.37

Summary of results from TSDF design approaches A - D for a 5 ° range rotation-invariant
filter, t' represents a relative measure of the total design time required.

J

Table 3:
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Out-of-class

image spacing

10_
Y
3° J

FRmean I FRmean(reduced set) (all training images)

1.3 I 6
1.1 .8
1.1 .9

Three TSDF filters designed to span 30 ° rotation range.


